Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202405493, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604975

RESUMEN

Synthesis of ammonia by electrochemical nitrogen reduction reaction (NRR) is a promising alternative to the Haber-Bosch process. However, it is commonly obstructed by the high activation energy. Here, we report the design and synthesis of an Al-Al bonded dual atomic catalyst stabilized within an amorphous nitrogen-doped porous carbon matrix (Al2NC) with high NRR performance. The dual atomic Al2-sites act synergistically to catalyze the complex multiple steps of NRR through adsorption and activation, enhancing the proton-coupled electron transfer. This Al2NC catalyst exhibits a high Faradaic efficiency of 16.56±0.3 % with a yield rate of 29.22±1.2 µg h-1 mgcat -1. The dual atomic Al2NC catalyst shows long-term repeatable, and stable NRR performance. This work presents an insight into the identification of synergistic dual atomic catalytic site and mechanistic pathway for the electrochemical conversion of N2 to NH3.

2.
J Phys Chem A ; 128(5): 958-971, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38272019

RESUMEN

As one kind of approximation of the full configuration interaction solution, the selected configuration interaction (sCI) methods have been shown to be valuable for large active spaces. However, the inclusion of dynamic correlation beyond large active spaces is necessary for more quantitative results. Since the sCI wave function can provide a compact reference for multireference methods, previously, we proposed an externally contracted multireference configuration interaction method using the sCI reference reconstructed from the density matrix renormalization group wave function [J. Chem. Theory Comput. 2018, 14, 4747-4755]. The DMRG2sCI-EC-MRCI method is promising for dealing with more than 30 active orbitals and large basis sets. However, it suffers from two drawbacks: spin contamination and low efficiency when using Slater determinant bases. To solve these problems, in this work, we adopt configuration state function bases and introduce a new algorithm based on the hybrid of tree structure for convenient configuration space management and the graphical unitary group approach for efficient matrix element calculation. The test calculation of naphthalene shows that the spin-adapted version could achieve a speed-up of 6.0 compared with the previous version based on the Slater determinant. Examples of dinuclear copper(II) compound as well as Ln(III) and An(III) complexes show that the sCI-EC-MRCI can give quantitatively accurate results by including dynamic correlation over sCI for systems with large active spaces and basis sets.

3.
Phys Rev Lett ; 131(15): 158001, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897750

RESUMEN

Characterizing the free energy landscape of water ionization has been a great challenge due to the limitations from expensive ab initio calculations and strong rare-event features. Lacking equilibrium sampling of the ionization pathway will cause ambiguities in the mechanistic study. Here, we obtain convergent free energy surfaces through nanosecond timescale metadynamics simulations with classical nuclei enhanced by atomic neural network potentials, which yields good reproduction of the equilibrium constant (pK_{w}=14.14) and ionization rate constant (1.369×10^{-3} s^{-1}). The character of transition state unveils the triple-proton transfer occurs through a concerted but asynchronous mechanism. Conditional ensemble average analyses establish the dual-presolvation mechanism, where a pair of hypercoordinated and undercoordinated waters bridged by one H_{2}O cooperatively constitutes the initiation environment for autoionization, and contributes extremely to the local electric field fluctuation to promote water dissociation.

4.
Mol Phys ; 121(9-10)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638114

RESUMEN

We propose a simple procedure for visualizing the electron density changes (EDC) during a chemical reaction, which is based on a mapping of rectangular grid points for a stationary structure into (distorted) positions around atoms of another stationary structure. Specifically, during a small step along the minimum energy pathway (MEP), the displacement of each grid point is obtained as a linear combination of the motion of all atoms, with the contribution from each atom scaled by the corresponding Hirshfeld weight. For several reactions (identity SN2, Claisen rearrangement, Diels-Alder reaction, [3+2] cycloaddition, and phenylethyl mercaptan attack on pericosine A), our EDC plots showed an expected reduction of electron densities around severed bonds (or those with the bond-order lowered), with the opposite observed for newly-formed or enhanced chemical bonds. The EDC plots were also shown for copper triflate catalyzed N2O fragmentation, where the N-O bond weakening initially occurred on a singlet surface, but continued on a triplet surface after reaching the minimum-energy crossing point (MECP) between the two potential energy surfaces.

5.
Inorg Chem ; 62(26): 10382-10388, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37348470

RESUMEN

Based on benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (dppn) with photo-oxidation activity, complexes [Ir(pbt)2(dppn)]Cl (1) and [Ir(pt)2(dppn)]Cl (2) have been synthesized (pbtH = 2-phenylbenzothiazole, and ptH = 2-phenylthiazole), with two aims, including studying the influence of the cyclometalating ligands (pbt- in 1, pt- in 2) on the photo-oxidation activity of these complexes and exploring their photo-oxidation-induced luminescence. Both 1H nuclear magnetic resonance (NMR) and electrospray (ES) mass spectrometry indicate that the benzo[g]quinoxaline moiety in complex 1 can be oxidized at room temperature upon irradiation with 415 nm light. Thus, this complex in CH2Cl2 shows photo-oxidation-induced turn-on yellow luminescence. In contrast, complex 2 reveals significant structural decomposition during the process of photo-oxidation due to incorporating a cyclometalating ligand pt- instead of pbt- in complex 1. In this paper, we report the photo-oxidation behaviors and the related luminescence modulation in 1 and 2 and discuss the relationship between structure and photo-oxidation activity in these complexes.

6.
J Chem Theory Comput ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36626721

RESUMEN

Quantum dynamics (QD) simulation is a powerful tool for interpreting ultrafast spectroscopy experiments and unraveling their microscopic mechanism in out-of-equilibrium excited state behaviors in various chemical, biological, and material systems. Although state-of-the-art numerical QD approaches such as the time-dependent density matrix renormalization group (TD-DMRG) already greatly extended the solvable system size of general linearly coupled exciton-phonon models with up to a few hundred phonon modes, the accurate simulation of larger system sizes or strong system-environment interactions is still computationally highly challenging. Based on quantum information theory (QIT), in this work, we realize that only a small number of effective phonon modes couple to the excitonic system directly regardless of a large or even infinite number of modes in the condensed phase environment. On top of the identified small number of direct effective modes, we propose a hierarchical mapping (HM) approach through performing block Lanczos transformations on the remaining indirect modes, which transforms the Hamiltonian matrix to a nearly block-tridiagonal form and eliminates the long-range interactions. Numerical tests on model spin-boson systems and realistic singlet fission models in a rubrene crystal environment with up to 7000 modes and strong system-environment interactions indicate HM can reduce the system size by 1-2 orders of magnitude and accelerate the calculation by ∼80% without losing accuracy.

7.
J Dyn Differ Equ ; : 1-19, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36407964

RESUMEN

In this paper, we consider a kind of second-order delay differential system. By taking some transforms, the property of delay is reflected in the boundary condition. The wonder is that the corrseponding first-order system is exactly the so-called P-boundary value problem of Hamiltonian system which has been studied deeply by many mathematicians, including the authors of this paper. Firstly, we define the relative Morse index µ Q ( A , B ) for the delay system and give the relationship with the P-index i P ( γ R ) of Hamiltonian system. Secondly, by this index, topology degree and saddle point reduction, the existence of periodic solutions is established for this kind of delay differential system.

8.
ACS Appl Mater Interfaces ; 13(16): 19023-19030, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33856193

RESUMEN

Miniaturized and manipulable optical probes are the foundation for developing in situ characterization devices in confined space. We developed two methods for fabricating free-standing single Ag nanowires (AgNWs) directly at the tip of a glass capillary either by chemical or electrochemical reduction. The electrochemical nature of both methods resulted in a rapid growth rate of AgNWs up to 1.38 µm/s and a controllable length from 5 to 450 µm. The AgNWs with a unique anisotropic structure allow localized surface plasmon resonance and surface plasmon waveguides in the radial direction and axial direction, respectively. We verified the possibility of using single AgNWs as an optical dispersion device and waveguide probe. By controlling the experimental conditions, rough-surface AgNWs with high surface-enhanced Raman scattering (SERS) activity were also fabricated. These SERS-active probes also exhibited advantages in acquiring molecular information from a single living cell.

9.
J Phys Chem B ; 125(2): 518-527, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33426891

RESUMEN

Fluorescent DNA-binding dyes are extensively employed as probe and biosensing in biological detection and imaging. Experiments and theoretical calculations of thiazole orange homodimeric (TOTO) dye binding to a single-strand DNA (ssDNA), poly(dG)n (n = 2, 4, 6, 8), reveal that the n = 6 complex shows about 300-fold stronger fluorescence than n = 2, 4 and a slightly stronger one than n = 8 complexes, which is benefited from the length match between TOTO and poly(dG)6. The machine learning, based on molecular dynamics trajectories, indicates that TOTO is featured by the dihedral angle along its backbone and its end-to-end distance, in which the latter one defines the stretch and hairpin structures of TOTO, respectively. The time-dependent density functional theory calculations on the low-lying excited states show that the stretched TOTO with π-π end-stacking binding mode can bring about strong fluorescence with localized π-π* transitions. For the n = 2, 4, and 8 complexes, the linear scaling quantum mechanics calculations indicate that the dominant hairpin TOTO with intercalative binding modes have relatively larger binding energies, leading to fluorescence quenching by intramolecular charge transfer. Our results may provide an insight for modulating the DNA-dye binding modes to tune the degree of charge transfer and designing fluorescent probes for the recognition of specific DNA sequences.


Asunto(s)
ADN , Sustancias Intercalantes , Fluorescencia , Colorantes Fluorescentes , Compuestos de Quinolinio , Tiazoles
10.
J Am Chem Soc ; 142(11): 4985-4989, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32129064

RESUMEN

The hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) play an important role in hydrogen-based energy conversion. However, the sluggish kinetics in alkaline media has raised debates on the relevant mechanism, especially on the role of surface hydroxyl (OH*). With the potential-related free energy profiles obtained with density functional theory calculations, the full pH range transient kinetics simulation of HER/HOR polarization curves on Pt(111) agrees well with experimental observations. Studying model systems with varying metal-OH* binding energies confirms that the current near the HOR onset potential is contributed from the pathway through OH- rather than OH*, suggesting that OH* is unlikely an effective activity descriptor for HOR. The degree of rate control analyses reveal that, while acidic current is controlled solely by the Tafel step, alkaline current is controlled jointly by Tafel and Volmer steps, as the Volmer barrier is considerably increased in alkaline conditions. Finally, based on a model study, we draw up a scheme of reducing the overpotential of alkaline HER/HOR by accelerating the Tafel step.

11.
Sci Bull (Beijing) ; 65(10): 796-802, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659197

RESUMEN

Electrochemical conversion of CO2 into fuels is a promising means to solve greenhouse effect and recycle chemical energy. However, the CO2 reduction reaction (CO2RR) is limited by the high overpotential, slow kinetics and the accompanied side reaction of hydrogen evolution reaction. Au nanocatalysts exhibit high activity and selectivity toward the reduction of CO2 into CO. Here, we explore the Faradaic efficiency (FE) of CO2RR catalyzed by 50 nm gold colloid and trisoctahedron. It is found that the maximum FE for CO formation on Au trisoctahedron reaches 88.80% at -0.6 V, which is 1.5 times as high as that on Au colloids (59.04% at -0.7 V). The particle-size effect of Au trisoctahedron has also been investigated, showing that the FE for CO decreases almost linearly to 62.13% when the particle diameter increases to 100 nm. The X-ray diffraction characterizations together with the computational hydrogen electrode (CHE) analyses reveal that the (2 2 1) facets on Au trisoctahedron are more feasible than the (1 1 1) facets on Au colloids in stabilizing the critical intermediate COOH*, which are responsible for the higher FE and lower overpotential observed on Au trisoctahedron.

12.
J Chem Phys ; 151(22): 224101, 2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31837675

RESUMEN

Electronic and/or vibronic coherence has been found by recent ultrafast spectroscopy experiments in many chemical, biological, and material systems. This indicates that there are strong and complicated interactions between electronic states and vibration modes in realistic chemical systems. Therefore, simulations of quantum dynamics with a large number of electronic and vibrational degrees of freedom are highly desirable. Due to the efficient compression and localized representation of quantum states in the matrix-product state (MPS) formulation, time-evolution methods based on the MPS framework, which we summarily refer to as tDMRG (time-dependent density-matrix renormalization group) methods, are considered to be promising candidates to study the quantum dynamics of realistic chemical systems. In this work, we benchmark the performances of four different tDMRG methods, including global Taylor, global Krylov, and local one-site and two-site time-dependent variational principles (1TDVP and 2TDVP), with a comparison to multiconfiguration time-dependent Hartree and experimental results. Two typical chemical systems of internal conversion and singlet fission are investigated: one containing strong and high-order local and nonlocal electron-vibration couplings and the other exhibiting a continuous phonon bath. The comparison shows that the tDMRG methods (particularly, the 2TDVP method) can describe the full quantum dynamics in large chemical systems accurately and efficiently. Several key parameters in the tDMRG calculation including the truncation error threshold, time interval, and ordering of local sites were also investigated to strike the balance between efficiency and accuracy of results.

13.
Small ; 15(49): e1904715, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31642190

RESUMEN

A new hole transporting material (HTM) named DMZ is synthesized and employed as a dopant-free HTM in inverted planar perovskite solar cells (PSCs). Systematic studies demonstrate that the thickness of the hole transporting layer can effectively enhance the morphology and crystallinity of the perovskite layer, leading to low series resistance and less defects in the crystal. As a result, the champion power conversion efficiency (PCE) of 18.61% with JSC = 22.62 mA cm-2 , VOC = 1.02 V, and FF = 81.05% (an average one is 17.62%) is achieved with a thickness of ≈13 nm of DMZ (2 mg mL-1 ) under standard global AM 1.5 illumination, which is ≈1.5 times higher than that of devices based on poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS). More importantly, the devices based on DMZ exhibit a much better stability (90% of maximum PCE retained after more than 556 h in air (relative humidity ≈ 45%-50%) without any encapsulation) than that of devices based on PEDOT:PSS (only 36% of initial PCE retained after 77 h in same conditions). Therefore, the cost-effective and facile material named DMZ offers an appealing alternative to PEDOT:PSS or polytriarylamine for highly efficient and stable inverted planar PSCs.

14.
J Chem Theory Comput ; 15(6): 3721-3729, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-30970207

RESUMEN

In singlet fission (SF), a spin-conserving splitting of one singlet exciton into two triplet excitation states, the transition between localized electronic states can be controlled and modulated by delocalized lattice phonons. In this work, we built an exciton-phonon (ex-ph) interaction model accounting local electronic states coupled with both local molecular vibrations and low frequency intermolecular phonon modes for SF in crystalline tetracene and rubrene. On the basis of the calculated electronic couplings at the equilibrium structure of the molecular dimer, a superexchange path for SF was found for tetracene while couplings between the triplet pair (TT) state and other diabatic states are zero for rubrene due to the high symmetry. Our further ex-ph spectral density analysis and quantum dynamics simulation based on our ex-ph interaction model suggested a thermal-activated mechanism for SF in rubrene crystal via symmetry breaking by nuclear vibration, which is in agreement with recent experiments. It is also shown that thermal fluctuations of electronic couplings in both tetracene and rubrene are mostly in the same order of magnitude at room temperature, and this could be one of the reasons for both tetracene and rubrene to exhibit SF time scales within a close range (hundreds to thousands of femtoseconds) in experiments.

15.
Phys Chem Chem Phys ; 21(7): 4072-4081, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30714590

RESUMEN

The photoexcitation mechanism in photochemistry and photophysics is a key to understanding the photostability and photoreaction of nucleobases. Using a combination of the generalized energy-based fragmentation (GEBF) and quantum mechanical and molecular mechanical (GEBF-QM/MM) approach and the QM/MM approach, we have investigated the electronic absorption spectra for the π-π* transition of uracil in aqueous solution, amorphous solid, and crystal. Our results indicate that the intermolecular interactions in terms of molecular packing are crucial for the investigation of the absorption spectra of uracil in different environments. There is a large red-shift (relative to uracil in the gas-phase) for uracil in the amorphous phase, which arises from hydrogen-bonding (HB) and close π-π stacking interactions. In contrast, the relatively smaller red-shift of uracil in aqueous solution can be attributed to the cooperative HB and long-range electrostatic and polarization interactions. Due to the HB and weak π-π interactions, the red-shift of the crystal is smaller than that of amorphous uracil. Furthermore, the results suggest that a large system is required to obtain the accurate absorption spectra of solutions, whereas small electrostatically embedded cluster models could be used to obtain the corresponding results for amorphous solids and molecular crystals.

16.
Acta Biomater ; 88: 280-292, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30721783

RESUMEN

Decellularized matrix is of great interest as a scaffold for the tissue engineering heart valves due to its naturally three-dimensional structure and bioactive composition. A primary challenge of tissue engineered heart valves based on decellularized matrix is to grow a physiologically appropriate cell population within the leaflet tissue. In this study, a composite scaffold was fabricated by the combination of a porous matrix metalloproteinase (MMP) degradable poly (ethylene glycol) (PEG) hydrogel that were loaded with stromal cell-derived factor-1α (SDF-1α) and a mechanically supportive decellularized porcine aortic valve. Results demonstrated that the modified scaffold enhanced bone marrow mesenchymal stem cells (BMSC) adhesion, viability and proliferation, and promoted BMSC differentiate into valve interstitial-like cells. Furthermore, these modifications lead to enhanced protection of the scaffold from thrombosis. In vivo assessment by rat subdermal model showed the modified scaffold was highly biocompatible with tissue remodeling characterized by promoting mesenchymal stem cells recruitment and facilitating M2 macrophage phenotype polarization. The surface layers of PEG hydrogel not only could provide a niche for cell migration, proliferation and differentiation, but also protect the scaffolds from rapid degeneration, inflammation and calcification. The intermediate layer of decellularized valve could maintain the organization of the scaffold and perform the valve function. The promising results emphasize the potential of our scaffolds to improve recellularization and promote remodeling of implanted decellularized valves. These findings suggest that the SDF-1α loaded MMP degradable PEG hydrogel modification could be an efficient approach to develop functional decellularized heart valve. STATEMENT OF SIGNIFICANCE: A composite scaffold was fabricated by the combination of a porous matrix metalloproteinase (MMP) degradable poly (ethylene glycol) (PEG) hydrogel that were loaded with SDF-1α and a mechanically supportive decellularized porcine aortic valve. The surface layers of PEG hydrogel not only could provide a niche for cell migration, proliferation and differentiation, but also protect the scaffolds from rapid degeneration, inflammation and calcification. The intermediate layer of decellularized valve could maintain the organization of the scaffold and perform the valve function. The promising results emphasize the ability of our scaffolds to improve recellularization and promote remodeling of implanted decellularized valves. This suggests that the extracellular matrix-based valve scaffolds have potential for clinical applications.


Asunto(s)
Válvula Aórtica/citología , Quimiocina CXCL12/farmacología , Hidrogeles/farmacología , Proteolisis , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Calcinosis/terapia , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Humanos , Inflamación/patología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Fenotipo , Proteolisis/efectos de los fármacos , Ratas Sprague-Dawley , Porcinos
17.
Adv Mater ; : e1801435, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29978512

RESUMEN

Adopting self-healing, robust, and stretchable materials is a promising method to enable next-generation wearable electronic devices, touch screens, and soft robotics. Both elasticity and self-healing are important qualities for substrate materials as they comprise the majority of device components. However, most autonomous self-healing materials reported to date have poor elastic properties, i.e., they possess only modest mechanical strength and recoverability. Here, a substrate material designed is reported based on a combination of dynamic metal-coordinated bonds (ß-diketone-europium interaction) and hydrogen bonds together in a multiphase separated network. Importantly, this material is able to undergo self-healing and exhibits excellent elasticity. The polymer network forms a microphase-separated structure and exhibits a high stress at break (≈1.8 MPa) and high fracture strain (≈900%). Additionally, it is observed that the substrate can achieve up to 98% self-healing efficiency after 48 h at 25 °C, without the need of any external stimuli. A stretchable and self-healable dielectric layer is fabricated with a dual-dynamic bonding polymer system and self-healable conductive layers are created using polymer as a matrix for a silver composite. These materials are employed to prepare capacitive sensors to demonstrate a stretchable and self-healable touch pad.

18.
Phys Chem Chem Phys ; 20(8): 5756-5765, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29411803

RESUMEN

Electroreduction of CO2 on Cu surface provides the potential in producing hydrocarbons and other multi-carbon products. However, a comprehensive understanding of the potential-related mechanism is required to improve the product selectivity as well as to reduce the overpotentials. Herein, we systematically characterize the potential effect on the complete reaction pathways to CO and HCOO- on the Cu(211) surface. Reaction free energy and activation barrier are computed as functions of electric potential. It is found that chemical adsorption state of CO2 is effectively stabilized by the substrate, which is expected to be dominant at potentials below -0.27 V vs. SHE, much earlier than that previously reported on Cu(100). Considering that the activation barriers of the other surface processes are small enough to be overcome at room temperature, the large reductive desorption free energies of OH- and HCOO- are suggested as the origin of high overpotentials.

19.
J Chem Theory Comput ; 13(10): 4699-4710, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28898080

RESUMEN

We improve the methodology to construct a complete active space-configuration interaction (CAS-CI) expansion for density-matrix renormalization group (DMRG) wave functions using a matrix-product state representation, inspired by the sampling-reconstructed CAS [SR-CAS; Boguslawski , K. ; J. Chem. Phys. 2011 , 134 , 224101 ] algorithm. In our scheme, the genetic algorithm, in which the "crossover" and "mutation" processes can be optimized based on quantum information theory, is employed when reconstructing a CAS-CI-type wave function in the Hilbert space. Analysis of results for ground and excited state wave functions of conjugated molecules, transition metal compounds, and a lanthanide complex illustrate that our scheme is very efficient for searching the most important CI expansions in large active spaces.

20.
J Chem Theory Comput ; 12(4): 1714-27, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26963572

RESUMEN

The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...